8 queens puzzle - определение. Что такое 8 queens puzzle
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое 8 queens puzzle - определение

MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
  • min-conflicts]] solution to 8 queens

8 queens puzzle         
Eight queens puzzle         
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
eight queens problem         

Википедия

Eight queens puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques.

The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3. Although the exact number of solutions is only known for n ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 n)n.